Abstract

Given the climate challenge, society is seeking low greenhouse gas emission energy sources. In jurisdictions such as Alberta, Canada where power is largely generated through the combustion of natural gas, geothermal offers a compelling option but it remains unclear as to its economic and technical viability. Here, we examine the potential for an enhanced geothermal system in the Basal Cambrian Sandstone Unit in Alberta, Canada. Prior to geothermal operation, hydraulic fracturing is conducted to enhance the permeability of the thermal reservoir. This lowers the pressure drop required for circulating fluids through the system. The results show that the open-loop enhanced geothermal system realizes an energy produced to energy invested ratio from 4 to 9 depending on different operating rate. The results also suggest that applying hydraulic fracturing can accelerate energy harvesting and energy efficiency over the early stages of the process but the greater the injection rate, the smaller is this benefit of hydraulic fracturing stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call