Abstract

Stringent regulations on exhaust emissions and fuel economy for vehicles have become major issues in the automotive industry. Hybrid electric vehicles (HEV) are one of the crucial alternative plans to current conventional vehicles, but they have drawbacks, which include increases in total hydrocarbon (THC) emission from the engine and deterioration of the combustion stability with frequent stopping and restarting of the engine. Intake port fuel film is evaporated up during the deceleration state due to the fuel-cut. The λ (relative A/F ratio) at engine restart is lean because part of injected fuel is used to form the fuel film in the intake port. This study revealed the behavior of a fuel film in engine stop with fuel-cut and in engine restart with a simulation model. To investigate the fuel film characteristics, a simulation model was applied and validated with a single-cylinder engine. The simulation result shows that λ of at least 1.2 is required for a stable engine restart. The minimum injection quantity of the first cycle for stable combustion is suggested to be at least 240% of the steady-state idle condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call