Abstract

Spark-ignition (SI) aviation piston engines are widely used on light helicopters and unmanned aerial vehicles (UAVs) because of the high-power density and ultra-high cost performance. Kerosene with high flash point is expected to improve safety of aforementioned aircrafts by replacing gasoline. However, in spark-ignition mode, kerosene is difficult to mix and is easy to knock. Short-chain alcohols have high volatility and octane number which can just make up for some defects of kerosene. In this paper, three kinds of alcohols including ethanol, n-propanol and n-butanol were blended with aviation kerosene (RP-3) by volume fraction of 30%, 50%, 70%, respectively. The combustion and emission characteristics of the blended fuels were deeply studied on a typical spark-ignition aviation piston engine. Meanwhile, engine performance fueled with commercial gasoline was also tested for comparison. Results indicated that alcohol/kerosene blends could reach higher brake thermal efficiency (BTE) (alcohol ratio ≥50%) compared to gasoline. Carbon monoxide (CO) and nitrogen oxides (NOx) emissions of blended fuels expressed dramatically descending. With the increase in alcohol ratio, the CO, hydrocarbons (HC) and soot emissions gradually decreased. The brake thermal efficiency showed an upward trend with the increase of alcohol ratios. The brake thermal efficiency of E70, P70 and B70 were increased by 2.15%, 3.52% and 6.51%, and the CO emissions of E70, P70 and B70 were reduced by 39.8%, 38.5% and 49.0%, respectively, compared to those of gasoline. Notably, n-butanol/kerosene blends exhibited the better combustion and emission characteristics, which had the higher efficiency and lower CO, HC and soot emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.