Abstract

AbstractAircraft engines need a cooling system to keep the engine oil well within the temperature limits for continuous operation. The aircraft selected for this study is a typical pusher type Light Transport Aircraft (LTA) having twin turbo prop engines mounted at the aft end of the fuselage. Due to the pusher propeller configuration, effective oil cooling is a critical issue, especially during low-speed ground operations like engine idling and also in taxiing and initial climb. However, the possibility of utilizing the inflow induced by the propeller for oil cooling is the subject matter of investigation in this work. The oil cooler duct was designed to accommodate the required mass flow, estimated using the oil cooler performance graph. A series of experiments were carried out with and without oil cooler duct attached to the nacelle, in order to investigate the mass flow induced by the propeller and its adequacy to cool the engine oil. Experimental results show that the oil cooler positioned at roughly 25 % of the propeller radius from the nacelle center line leads to adequate cooling, without incorporating additional means. Furthermore, it is suggested to install a NACA scoop to minimize spillage drag by increasing pressure recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call