Abstract

A prototype of thermophotovoltaic (TPV) power generation was designed to study the influence of different emitters, e.g. blackbody emitter and selective emitters, on the photoconversion efficiency of InGaAs based 0.75 eV InGaAs photovoltaic (PV) cells. The prototype consists of a diffusion type burner which uses propane and forced air as the inlet fuels. The combustion process is forced to take place inside a cylindrical geometry emitter and heats the emitter. As a result, the emitter radiates the PV cells, which are arranged around the emitter. The PV cells then convert radiant energy to electricity. A thin quartz tube is placed between the emitter and the PV cells to prevent the combustion products from contaminating the PV cells. The PV cells are cooled using forced convection air. In this paper, the authors used novel material processing approaches to produce a cylindrical metallic alloy emitter (blackbody emitter) and a rare earth oxide emitter (selective emitters). The emitters are of a fibrous structure and have high porosity (about 90 vol.%). Highly porous emitters emits high emittance and also allows the combustion products through them. By using these emitters, the influence of emitter types on the overall TPV efficiency is determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.