Abstract

Dense phase pneumatic conveying is critically dependent on the physical properties of the materials to be conveyed. However, many materials, such as alumina and coarse fly ash, which are highly abrasive, do not have dense phase conveying capacity. Bypass pneumatic conveying systems provide a dense phase capability to non-dense phase capable bulk materials. These systems also provide the capacity of lower the conveying velocity and therefore lower pipeline wear and lower power consumption occurs. The objectives of this work were to study the energy consumption and wear of bypass pneumatic transport systems. Pneumatic conveying of alumina experiments were carried out in a 79 mm diameter main pipe with a 27 mm inner diameter bypass pipe with orifice plate flute arrangement. High-speed camera visualizations were employed to present flow regimes in a horizontal pipe. The experimental result showed the conveying velocity of bypass system is much lower than that of conventional pipelines; thus, specific energy consumption in the conveying process is reduced. The service life of the bypass line has also been estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call