Abstract
Recently, considerable attention has been given to using magnetic nanoparticles (MNPs) for capturing oil from oil-in-water (O/W) emulsions, despite MNPs’ inherent instability and agglomeration. Their stabilization through changing surface chemistry is required to increase dispersivity. In this research, we use cetyltrimethylammonium bromide (CTAB) as a cationic surfactant to increase the positive surface charge of the particles, resulting in a better stability in the aqueous solution because of increased repulsive forces. The functionalized MNPs are characterized using transmission electron microscopy (TEM), zeta potential, and contact angle (CA) measurements. The aim of this study is to investigate the oil separation efficiency (SE) and equilibrium oil adsorption capacity of the synthesized particles, which are determined using gas chromatography analysis. We also study the adsorption behavior using isotherm and kinetic models. The SE values indicate the superior performance of MNP@CTAB for oil adsorption from dodecane-in-water nanoemulsion (SE = 99.80%) compared to the bare MNPs with SE of approximately 57.46%. These findings are attributed to the stronger electrostatic attraction between the MNP@CTAB having high positive charge and negatively charged oil droplets. The adsorption isotherm results using both linear and non-linear regression methods show that the Freundlich isotherm is the best fit to the experimental equilibrium data (with calculated R2 > 0.97), verifying a multilayer heterogeneous adsorption. Moreover, the pseudo-first-order kinetic model describes the experimental equilibrium data in a greater congruence (R2 = 0.99), suggesting physical adsorption of oil onto MNPs through van der Waals and physical bonding, which is also confirmed through zeta potential measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.