Abstract

Discrete Element Method (DEM) has been applied in recent studies of soil cutting tool interactions in terramechanics. Actual soil behavior is well known to be inexpressible by simple elemental shapes in DEM, such as circles for 2D or spheres for 3D because of the excessive rotation of elements. To develop a more effective model for approximating real soil behavior by DEM, either the introduction of a rolling resistance moment for simple elemental shape or the combination of simple elements to form a complex model soil particle shape cannot be avoided. This study was conducted to investigate the effects of elemental shape on the cutting resistance of soil by a narrow blade using 3D DEM. Six elemental shapes were prepared by combining unit spheres of equal elemental radius. Moreover, cutting resistance was measured in a soil bin filled with air-dried sand to collect comparative data. The elemental shape, with an axial configuration of three equal spheres overlapped with each radius, showed similar results of soil cutting resistance to those obtained experimentally for the six elemental shapes investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.