Abstract

The electronic and magnetic properties of Mn2CuSi and Mn2ZnSi Heusler alloys have been investigated using full-potential linearized augmented plane wave method. The optimized equilibrium lattice parameters in stable F-43m configuration are found to be 5.75Å for Mn2CuSi and 5.80Å for Mn2ZnSi. Spin-resolved calculations show that the Mn atoms at inequivalent Wyckoff positions have different contributions to the total magnetic moment in the unit cell. The anti-parallel magnetic moments of inequivalent Mn atoms sum to an integer with total magnetic moment per unit cell. The 100% spin-polarization at Fermi energy together with the total magnetic moment of 1.0µB for Mn2CuSi and 2.0µB for Mn2ZnSi per unit cell, predict that the materials follow MT=ZT – 28 Slater–Pauling rule. Both the materials under study exhibit half-metallicity with an energy gap in the spin-down channels. In the study, we predict a rather fine value of Seebeck coefficient. Further, the decreasing electrical conductivity with temperature shows a metallic character in spin-up configurations, while the electrical conductivity of spin-down states follows a semiconductor-like trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.