Abstract

Enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode which was charged with positive high DC voltage impinges to water surface and leads to evaporation enhancement by disturbing the saturated air layer over the water surface. The study was focused on the effects of corona wind velocity, electrode spacing and air flow velocity on the level of evaporation enhancement. Two sets of experiments, i.e., with and without electric field, have been conducted. Data obtained from the first experiment were used as reference for evaluation of evaporation enhancement at the presence of electric field. Applied voltages ranged from corona threshold voltage to spark over voltage at 1 kV increments. The results showed that corona wind has great enhancement effect on the water evaporation rate, but its effectiveness gradually diminishes by increasing air flow velocity. Maximum enhancement ratios were 7.3 and 3.6 for air velocities of 0.125 and 1.75 m/s, respectively. Finally two empirical correlations were obtained for prediction of electrohydrodynamic evaporation enhancement and its coefficient of thermal performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.