Abstract

AbstractIn lithium batteries, the interface between electrolytes and electrodes with optimized structural stability and fast charge transfer kinetics plays a pivotal role in achieving overall cycle and rate performance. Introducing a uniform interfacial layer that conducts Li+ ions while insulating electrons, through atomic layer deposition (ALD) of lithium compounds, has shown promise in facilitating lithium ion transport and enhancing interface stability. However, synthesizing lithium compounds with both robust chemical stability and a broad electrochemical window using ALD poses challenges due to the difficulty of obtaining desired products under specific ALD reaction conditions. In this study, this challenge by investigating Li3PO4 is addressed, a compound grown by ALD that exhibits a noteworthy property: the in situ formation of a more stable LiPO3 phase under high applied voltage. The LiPO3 phase possesses an extended theoretical stability window (LiPO3: 2.48‐5.00 V versus Li3PO4: 0.69‐4.21 V), and its emergence substantially enhances the electrochemical performance of all‐solid‐state lithium batteries based on polyethylene oxide (PEO). This work not only presents experimental evidence of the in situ transformation of the interfacial layer but also offers a pragmatic approach to realizing all‐solid‐state lithium batteries with elevated energy density, emphasizing safety and stability considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.