Abstract
Electrode reactions of intermediates formed during capture of OH radicals by dimethyl sulfoxide (DMSO) molecules were studied using laser photoemission in aqueous buffer solutions in the pH range from acidic to basic. The results were compared with characteristics of one-electron reduction of methyl radicals generated via photoemission from methyl halides CH3X (X = Cl, I). From these experiments, it was concluded that intermediates in these systems were identical since the primary product of capture of OH radicals by DMSO molecules, i.e., adduct (CH3)2SO. (OH), was spontaneously decomposed to form .CH3 with a time as low as <2 × 10−5 s. Some anomalies were found on time-resolved voltammograms of intermediates in the pH range from weakly basic to weakly acidic and at illumination times of an electrode with UV light Tm ≤ 90–300 ms. These features were presumably caused by rather slow formation of organomercury intermediates as interaction products of the components of the system DMSO—OH radical—mercury electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.