Abstract

Lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) based water-in-salt electrolytes (WiSEs) has recently emerged as a new promising class of electrolytes, primarily owing to their wide electrochemical stability windows (∼3–4 V), that by far exceed the thermodynamic stability window of water (1.23 V). Upon increasing the salt concentration towards superconcentration the onset of the oxygen evolution reaction (OER) shifts more significantly than the hydrogen evolution reaction (HER) does. The OER shift has been explained by the accumulation of hydrophobic anions blocking water access to the electrode surface, hence by double layer theory. Here we demonstrate that the processes during oxidation are much more complex, involving OER, carbon and salt decomposition by OER intermediates, and salt precipitation upon local oversaturation. The positive shift in the onset potential of oxidation currents was elucidated by combining several advanced analysis techniques: rotating ring-disk electrode voltammetry, online electrochemical mass spectrometry, and X-ray photoelectron spectroscopy, using both dilute and superconcentrated electrolytes. The results demonstrate the importance of reactive OER intermediates and surface films for electrolyte and electrode stability and motivate further studies of the nature of the electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.