Abstract

Zinc oxide (ZnO) nanowires have been synthesized by using tubular furnace chemical vapor deposition technique. The morphology, chemical composition and crystal structure of as-synthesized ZnO nanowires were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. Four-terminal current–voltage ( I– V) measurements were employed to study the electrical conductance of ZnO nanowires under various testing gas environments for gas sensing purpose. The I– V curves at temperature ranging from 150 to 300 K were recorded in the testing chamber under vacuum. The Arrhenius plot shows perfect linear relationship between the logarithm of the current I and inverse temperature 1/ T. The donor level of the semiconducting nanowires is about 326 meV. The I– V behaviors were found to be reversible and repeatable with testing gases. The electrical conductivity was enhanced by a factor of four with ambient CO gas compared to that in vacuum and other testing gases. The optoelectronic properties of the ZnO nanowires were obtained by two-terminal I– V measurement method while the nanowires were illuminated by a ruby laser. The electrical conductivity was increased by 60% when the laser was present in comparison to that when the laser was off. Those significant changes suggest that nano-devices constructed by the ZnO nanowires could be used in gas sensing and optical switching applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.