Abstract
Novel ultra-long ZnO nanorods, with lengths about 0.5–1.5 mm and diameters ranging from 100 to 1000 nm, in mass production have been synthesized via the vapor-phase transport method with CuO catalyst at 900 °C. Rectifying Schottky barrier diodes have been fabricated by aligning a single ultra-long ZnO nanorod across paired Ag electrodes. The resulting current–voltage ( I– V) characteristics of the SBD exhibit a clear rectifying behavior. The ideality factor of the diode is about 4.6, and the threshold voltage is about 0.54 V at room temperature (300 K). At the same time the detailed I–V characteristics have been investigated in the temperature range 423–523 K. In addition, after exposure of the Schottky diodes to NH 3, the forward and reverse currents increase rapidly, indicating a high sensitivity to NH 3 gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.