Abstract

A radially polarized beam possesses peculiar focusing properties compared with a linearly polarized beam, for example, the generation of a strong longitudinal field and zero intensity of the Poynting vector on the beam axis. In order to exploit these focusing properties, here we consider a system in which gold metal cubes are arranged along the propagation direction of the beam. An electric field enhancement of more than 20-times can be generated between two gold cubes separated by a distance λ/10 on the optical axis. This is because the energy of a radially polarized beam can propagate even if a metal cube is located on the beam axis, and a longitudinal field generated between the cubes can induce a surface plasmon mode. We show that these results are peculiar properties that cannot be produced with an incident linearly polarized beam. We also show that the beam can generate multiple regions of electrical field enhancement in the propagating direction when multiple metal cubes are arranged on the beam axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.