Abstract

The minimization of plasma-induced damage (PID) in plasma etching is important for the precise and smooth removal of a depth of approximately 7 nm of GaN films to fabricate gate-recess GaN-based normally-off power electronic devices. We have systematically studied the photoluminescence (PL) properties and surface morphologies of GaN films exposed to Cl2 plasma at 400 °C, focusing on their dependences on etch time and ion energy. It is noticeable that PL degradation saturated at etch times of more than 2 min, while surface roughness increased continuously with etch time. Variations of surface roughness with bias voltage were negligible. PID was successfully suppressed by reducing bias voltage, leading to the decrease in incident ion energy on the surface, and thus the near-band-edge emission (NBE) intensity as a PL property was increased to 98.8% of the initial value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call