Abstract

Graphene nano-flakes (GNFs) are predicted to host spin-polarized metallic edge states, which are envisioned for exploration of spintronics at the nanometer scale. To date, experimental realization of GNFs is only in its infancy because of the limitation of precise cutting or synthesizing methods at the nanometer scale. Here, we use low temperature scanning tunneling microscope to manipulate coronene molecules on a Cu(111) surface to build artificial triangular and hexagonal GNFs with either zigzag or armchair type of edges. We observe that an electronic state at the Dirac point emerges only in the GNFs with zigzag edges and localizes at the outmost lattice sites. The experimental results agree well with the tight-binding calculations. Our work renders an experimental confirmation of the predicated edge states of the GNFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.