Abstract

The investigation of nonlinear dynamical systems of the type $\dot{x}=P(x,y,z),\dot{y}=Q(x,y,z),\dot{z}=R(x,y,z)$ by means of reduction to some ordinary differential equations of the second order in the form $y''+a_1(x,y)y'^3+3a_2(x,y)y'^2+3a_3(x,y)y'+a_4(x,y)=0$ is done. The main backbone of this investigation was provided by the theory of invariants developed by S. Lie, R. Liouville and A. Tresse at the end of the 19th century and the projective geometry of E. Cartan. In our work two, in some sense supplementary, systems are considered: the Lorenz system $\dot{x}=\sigma (y-x), \dot{y}=rx-y-zx,\dot{z}=xy-bz $ and the R\"o\ss ler system $\dot{x}=-y-z,\dot{y}=x+ay,\dot{z}=b+xz-cz.$. The invarinats for the ordinary differential equations, which correspond to the systems mentioned abouve, are evaluated. The connection of values of the invariants with characteristics of dynamical systems is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.