Abstract

Compactness and lateral support configuration provisions for design of steel beams are formulated so as to ensure that the resulting beam exhibits adequate ductility. It appears from the current research that slenderness limitations are not valid for beams made of the high strength steel grades. In this paper an attempt is made to study on influence of flange and web slenderness as well as lateral support spacing of homogenous and hybrid welded I-sections made of high strength steel on member ductility. For this purpose an experimentally verified nonlinear numerical analysis of the local and overall stability was performed. These beams are subjected to constant moment loading a new theoretical method is proposed to calculate the rotation capacity for this loading type. A comparative study was carried out between this method and numerical study results to ensure the accuracy of proposed method. In this research realistic material behavior and residual stresses were adopted in finite element models. Results have shown that using the high strength steel in cross sections subjected to bending has a significant effect on flexural behavior of these members. Meanwhile, in present study, interaction between the flange and web slenderness ratios was evaluated in accordance to AISC criteria for compact sections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.