Abstract

Combining Doxorubicin (DOX) with sorafenib (SF) is a promising strategy for treating Hepatocellular Carcinoma (HCC). However, strict dosage control is required for both drugs, and there is a lack of target selectivity. This study aims to develop a novel nano-drug delivery system for the combined use of DOX and SF, aiming to reduce their respective dosages, enhance therapeutic efficacy, and improve target selectivity. DOX/SF co-loaded liposomes (LPs) were prepared using the thin-film hydration method. The liposomes were modified with 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine (DSPE)- polyethylene glycol (PEG2000), DSPE-PEG1000-cell penetrating peptide TAT, and Glycyrrhetinic Acid (GA). The basic properties of the liposomes were characterized. CCK-8 cell viability assays were conducted using HepG2, MHCC97-H, and PLC cell models, and apoptosis experiments were performed using HepG2 cells to determine if this delivery system could reduce the respective dosages of DOX and SF and enhance HCC cytotoxicity. Liposome uptake experiments were performed using HepG2 cells to validate the target selectivity of this delivery system. A GA/TAT-DOX/SF-LP liposomal nano drug delivery system was successfully constructed, with a particle size of 150 nm, a zeta potential of -7.9 mV, a DOX encapsulation efficiency of 92%, and an SF encapsulation efficiency of 88.7%. Cellular experiments demonstrated that this delivery system reduced the required dosages of DOX and SF, exhibited stronger cytotoxicity against liver cancer cells, and showed better target selectivity. A simple and referenceable liposomal nano drug delivery system has been developed for the combined application of DOX and SF in hepatocellular carcinoma treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.