Abstract

Various ion storage layers were fabricated on ITO-glass substrates by a dry deposition process to study their effects in electrochromic devices. Dense nickel oxide (NiO) film was formed using micro-sized NiO particles, a porous film was formed using nano-sized NiO particles, and a porous antimony tin oxide (ATO) film was formed using nano-sized ATO particles. Electrochemical analyses revealed that the nano-porous NiO layer had a high charge capacity with a low charge transfer resistance. Moreover, an electrochromic device using a NiO film with nano-sized pores had an optical transmittance difference of 42% and a stable cyclic transmittance for 1h at a wavelength of 630nm. We assessed the effects of the different ion storage layers by evaluating the electrochromic device in terms of the following important properties: 1) high charge capacity, 2) low charge transfer resistance at the interface between film and electrolyte, and 3) high diffusion rate from film to electrolyte. Based on these criteria, we found that the ion storage layer formed with nano-sized NiO particles best satisfied these conditions. Finally, we confirmed that stable and high electrochromic performance can be achieved through improving these properties in ion storage layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.