Abstract

This article presents experiment data on the preferential CO oxidation (PROX) in a hydrogen-rich stream, currently the most practical method for CO removal induced by a double-stage process. The reaction was carried out in a microreactor testing unit using Au and Pt supported on an A zeolite catalyst in the temperature range of 50−300 °C under atmospheric pressure. The reactant gas mixture contained CO (1%), O2 (1%), H2 (40%), CO2 (0−10%), and H2O (0−10%), with the balance being He, at a total flow rate of 50 mL/min. The results clearly show that the addition of the second stage significantly reduces the H2 loss and the O2 requirements while greatly increasing the CO selectivity from ∼48 to ∼58%. The addition of CO2 and H2O in the feed slightly reduces the CO oxidation activity both in single- and double-stage processes. Moreover, the double-stage process shows a CO removal efficiency of over 99% during 60 h of testing at a reaction temperature of 170 °C in the simulated reformed gas (CO2- and H2O-free).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.