Abstract
This paper is based on a detailed study of cooperative secondary control strategy for accurate load sharing in DC microgrids in different communication medium. Since accuracy in DC voltage regulation and load sharing can’t be achieved simultaneously in a non-negligible impedance network, an adaptive droop has been proposed to address this issue to a significant extent via a secondary controller. A fixed primary droop controller along with a conventional secondary controller generally introduces a loading mismatch between converters while accomplishing voltage regulation at load bus. To combat this issue, an adaptive droop is proposed to improve power sharing along with a tertiary update used for fine-tuning. Since a distributed controller collect information from its neighbors, its performance is highly influenced by the communication medium and its characteristics, such as latency, failure rate, etc. Hence, the efficacy of the proposed distributed communication architecture is tested in OPNET environment to conclude communication factors. These results are used to validate the performance of the proposed control strategy in MATLAB/SIMULINK environment for various communication as well as converter adversities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.