Abstract

Hypotension and syncope are recognized features of chronic aortic stenosis. This study examined vasomotor responses and dynamic compliance in isolated abdominal aortae after chronic constriction of the ascending aorta. Guinea pigs underwent constriction of the ascending aorta or sham operation. Sections of descending aorta were removed for studies of contractile performance and compliance. Dynamic compliance was measured using a feedback-controlled pulsatile pressure system at frequencies of 0.5, 1.5 and 2.5 Hz and mean pressures from 40 to 100 mmHg. Chronic (149+/-6 days) aortic constriction resulted in significant increases in organ weight/body weight ratios for left ventricle (58%), right ventricle (100%) and lung (61%). The presence of heart failure was indicated by increased lung weights, left ventricular end-diastolic pressure and systemic vascular resistance, reduced cardiac output and increased levels of plasma atrial natriuretic peptide (166%), adrenaline (x20), noradrenaline (106%) and dopamine (x3). Aortic rings showed similar constrictor responses to phenylephrine and angiotensin II, but maximal vasodilator responses to acetylcholine and isoprenaline were significantly increased (144% and 48% respectively). Dilator responses to sodium nitroprusside, forskolin and cromokalim were unchanged. Compliance of all vessels decreased with increasing pulsatile frequency and to a lesser extent with increased mean pressure, but were similar in aortic-constricted and control groups. Chronic constriction of the ascending aorta resulted in heart failure and increased vasodilator responses to acetylcholine and isoprenaline in the distal aorta while dynamic compliance was unchanged. We hypothesize that increased endothelium-mediated vasodilatation may contribute to hypotension and syncope in patients with left ventricular outflow obstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.