Abstract

The rise in industrialization and population has led to an increase in the economic significance of existing urban areas, and thus the utilization of underground space has become quite remarkable It is an undeniable fact that in seismically active regions, the underground areas are also exposed to the risk of earthquakes. The devastating 1995 Kobe-Japan, 1999 Chi-Chi-Taiwan and 1999 Kocaeli-Turkey earthquakes are known to have caused major damage to existing underground structures. In this study, numerical models based on finite differences in FLAC 2D were established to evaluate the displacements of the ground around the tunnels located in liquefiable soils. In order to represent the liquefaction condition in the models, soils in the Adapazarı region, which have alluvial characteristics, were used. Soil deformations were examined in models with varying tunnel depths and diameters, for both liquefiable and non-liquefiable soils within the same layers. As a result of this study, it is stated that more stability losses are observed in analyzes where liquefaction can be defined - that is, changes in pore water pressures can be modeled - compared to analyzes without liquefaction. The layout of the ground layers is important for the positioning of the tunnel. The placement of the tunnel towards the solid layers caused the deformations to decrease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call