Abstract

The strength of rock under combined compression and shear loading has been paid more and more attention, but still lacks a theoretical model that incorporates both compression–shear characteristics and influence of dip angle to estimate the strength of the rock. This work is aiming to solve the issue by combining experimental and theoretical methods. First, in the laboratory, 112 rock samples with different sizes were applied to obtain the dip effect characteristics of strength via combined compression–shear tests. The ratio of compression–shear strength to uniaxial compression strength is called the compression–shear coefficient, which is used to characterize the degree of dip effect. Second, according to the compression–shear load characteristics of inclined rock samples, a strength model was established considering both compression–shear characteristics and dip angle by the Mohr–Coulomb failure theory. This strength model is an extension of the Mohr–Coulomb criterion and was verified by experimental data. The verification results are consistent with experimental results. Finally, the mechanism of dip effect on strength was explained from the resistance to the sliding and stress path of the rock sample. The results show that the dip effect is an inevitable strength weakening characteristic of rock materials under combined compression–shear loading. Compared with the vertical rock sample loaded under pure pressure, the resistance to the sliding of inclined rock samples decreases and the stress path is changed, which reduces the ability of the rock sample to resist external loads, resulting in the decrease of strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call