Abstract
The different graphite morphologies, like graphite intercalation compound (GIC), expanded graphite (EG), and exfoliated graphite (ExfG), were investigated as microwave absorbing materials (MAMs). The modification of the GIC was carried out in two independent parts, consisting of heat treatment and subsequent ultrasound agitation, forming the EG and ExfG, respectively. The surface morphology and structural characterization were investigated using the scanning electron microscope and Raman spectroscopy. Electromagnetic characterization was performed with a vector network analyzer and rectangular waveguide in the frequency range from 8.2 to 12.4 GHz (X-band) and from 12.4 to 18 GHz (Ku-band). The effects of different graphite morphologies and thickness of the composite were analyzed on the electromagnetic properties. The results of the reflection loss show that the samples affect the performance of the MAMs. The EG sample presents an excellent attenuation of around − 22.5 dB (≈ 99 microwave attenuation) for 2 mm thickness samples within the X-band frequency range. This behavior can be attributed to the expanded and interconnected structure of the EG, which has a large surface area and connectivity between the structures within the composite. Thus, it was found that EG is the best graphite structure for application in microwave absorber of broadband. The GIC and ExfG exhibited poor performance of microwave absorption (above − 10 dB).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.