Abstract

Here we aimed to investigate various droplet formation regimes in a two-dimensional T-junction microchannel geometry using the open source software OpenFOAM. Two incompressible fluids, continuous phase in the main channel and dispersed phase in the lateral channel, have been considered. The interFoam solver was used to simulate laminar flow with two incompressible and isothermal phases. We evaluated the capability of “Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)” volume of fluid (VOF) technique of the OpenFOAM for modeling of the droplet formation and movement in different regimes. The flow behavior in the T-junction microchannel over a wide range of capillary numbers (0.006 to 0.12), volume flow rate ratio (0.125, 0.25, 0.5), and contact angle (130° to 180°) in the squeezing, dripping and jetting regimes were examined.The importance of parameters such as contact angle, capillary number, flow rate ratio, and Reynolds number at the time of separation, as well as the formation of droplets, was investigated in different regimes. We found that droplet detachment time increases by increasing the contact angle in the squeezing regime while increasing the contact angle in the dripping regime results in a decrease in the droplet detachment time. We compare the role of pressure gradient and shear stress forces in the droplet formation process in both dripping and squeezing regimes in details. We also provide a classification of two-phase flow regimes in the investigated T-junction microchannel in terms of three main parameters of, e.g., flow rate ratio, contact angle, and capillary number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.