Abstract

Condensation in axisymmetric turbulent air-steam jets is studied theoretically and experimentally under bench experiment conditions in which a hot mist jet is injected from a nozzle into air. On the basis of the physico-mathematical model developed, four problems are considered: homogeneous condensation in the jet at a fairly low ambient air temperature, heterogeneous condensation on particles introduced into the jet at the nozzle outlet, heterogeneous condensation on particles ejected into the jet from the surrounding space, and condensation on ions entering the jet from a corona point on the flow axis. The local characteristics of the dispersed phase (mean particle size, standard deviation of the particle size, particle number and volume concentrations) and its integral characteristics (coefficient of vapor conversion into condensed phase and the optical thickness of the jet in different sections) are determined. The calculation results are compared with experimental data. As an application of the model developed, the characteristics of heterogeneous condensation in the jets of certain modern aircraft engines (IL-96-300, Tu-204, MiG-29, Boeing-707) are found on the assumption that the condensation occurs on particles entering the jet at the nozzle outlet and the particle growth rate in all stages (including the initial stage of particle irrigation) coincides with the growth rate of liquid drops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call