Abstract

A second-order high-resolution Total Variation Diminishing (TVD) scheme based on Lagrange interpolation polynomial was proposed for the spatial discretisation of convective terms in strongly convected problems with non-uniform grid topologies. Performances of classical and TVD-based Finite Difference (FD) schemes, higher-order Lagrange interpolation polynomial-based schemes and the proposed scheme were investigated on the Method of Lines (MOL) solution of two test problems, a simple one-dimensional convective flow and a two-dimensional unsteady laminar diffusion flame. The proposed scheme produced accurate results without spurious oscillations and numerical diffusion encountered in the classical schemes, and hence, was found to be a successful scheme applicable to strongly convective flow problems with non-uniform grid resolution. The proposed algorithm can be readily incorporated into existing codes based not only on MOL but also on other numerical solution techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.