Abstract

We present depth-resolved spatial-domain low-coherence quantitative phase microscopy, a simple approach that utilizes coherence gating to construct a depth-resolved structural feature vector quantifying sub-resolution axial structural changes at different optical depths within the sample. We show that this feature vector is independent of sample thickness variation, and identifies nanoscale structural changes in clinically prepared samples. We present numerical simulations and experimental validation to demonstrate the feasibility of the approach. We also perform experiments using unstained cells to investigate the nanoscale structural changes in regulated cell proliferation through cell cycle and chromatin decondensation induced by histone acetylation.

Highlights

  • IntroductionThe ability to identify structural changes in cells and tissue, especially at the nanometer scale during disease processes (e.g., cell differentiation, proliferation, gene expression, malignant transformation) has important implications in biomedical research and clinical diagnosis

  • The ability to identify structural changes in cells and tissue, especially at the nanometer scale during disease processes has important implications in biomedical research and clinical diagnosis

  • 1 April 2013 / Vol 4, No 4 / BIOMEDICAL OPTICS EXPRESS 598 clinically prepared cell blocks, we investigate the depth-resolved nanoscale structural alterations within the cell nucleus during the regulation of cell proliferation through cell cycle and chromatin decondensation induced by histone acetylation with altered chromatin density and structure

Read more

Summary

Introduction

The ability to identify structural changes in cells and tissue, especially at the nanometer scale during disease processes (e.g., cell differentiation, proliferation, gene expression, malignant transformation) has important implications in biomedical research and clinical diagnosis. SL-QPM uses a reflection-mode common-path low-coherence interferometric setup equipped with a broadband light source and spectroscopic detection. It quantifies changes in the optical path length (OPL), with nanoscale sensitivity, to capture the sub-resolution structural changes within the cell nucleus. The OPL is obtained by measuring the phase of the Fourier-transformed spectral interference signal at a specific optical depth of interest. The reflection-mode common-path setup suppresses the common-mode phase noise, while the spatial low-coherence of the light source prevents back-scattered light from one location within the sample from coherently combining with back-scattered light from another displaced location, resulting in the suppression of coherence-dependent speckle noise. A broadband light source is used for improved axial resolution

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call