Abstract

This paper reports on the degradation of inversion channel mobility of SiC MOSFET caused by the increase of channel doping. SiC MOSFETs were fabricated on three wafers, the doping concentrations of the epitaxial layer of which were 16 10 2× cm-3 (sample A), 17 10 2× cm-3 (sample B) and 17 10 4× cm-3 (sample C). The field effect mobility sharply decreases as the doping concentration increases. Hall mobility measurements have been done to investigate the degradation of the mobility due to doping. The measurement of sample A shows that, as a consequence of the decrease of the free carrier density due to MOS interface traps, the Hall mobility is as much as a factor of ten higher than the field effect mobility. In contrast, in regard to the measurement of sample B and sample C, we encountered unstable Hall voltage and could not obtain reproducible results. This implies that such high-density traps are generated that a channel disappears in the higher-doping samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.