Abstract

In this letter, a study of physical mechanisms is introduced to describe an abnormal phenomenon in transfer characteristics while p-type low-temperature polycrystalline silicon thin-film transistors (LTPS TFTs) were subjected to a negative bias temperature stress (NBTS) in an illuminated environment. In general, under NBTS, the transfer characteristics exhibits a negative shift of threshold voltage and a degradation of subthreshold swing. Here, however, experimental results reveal that the degree of degradation is different after NBTS is applied to poly-silicon TFTs in a darkened and in an ultraviolet condition. This variation is mainly a result of the light-generated electrons recombining with the inversed holes, and leading to a lower degree of degradation. Moreover, we found that the influence of the UV light is an edge effect at different channel lengths. This letter investigates the illumination effect in LTPS TFTs during NBTS, and the phenomenon is clarified by electrical measurements and by trap state extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.