Abstract

ABSTRACT In geotechnical engineering, the time-dependent behaviour or ageing behaviour is vital for applications such as earthwork compaction and liquefaction potential assessment. This study introduces a novel test apparatus to understand micromechanical factors and deformations at grain contacts. Using a non-contact Digital Image Correlation (DIC) technique, deformations were measured with a 10 μϵ spatial resolution. This enabled quantification of grain creep and contact maturing deformations, surpassing previous experimental methods. To model this complex behaviour, Machine Learning (ML) models, including an artificial neural network (ANN) and long-short term memory neural network (LSTM), were used, achieving a 1-2% error rate with experimental results. The integration of ML offers a promising tool for predicting long-term grain strains, enhancing the assessment of structures' serviceability with the studied materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.