Abstract

In recent years, indirect digital radiography detectors have been actively studied to improve radiographic image performance with low radiation exposure. This study aimed to achieve low-dose radiation imaging with a thick scintillation detector while simultaneously obtaining the resolution of a thin scintillation detector. The proposed method was used to predict the optimal point spread function (PSF) between thin and thick scintillation detectors by considering image quality assessment (IQA). The process of identifying the optimal PSF was performed on each sub-band in the wavelet domain to improve restoration accuracy. In the experiments, the edge preservation index (EPI) values of the non-blind deblurred image with a blurring sigma of σ = 5.13 pixels and the image obtained with optimal parameters from the thick scintillator using the proposed method were approximately 0.62 and 0.76, respectively. The coefficient of variation (COV) values for the two images were approximately 1.02 and 0.63, respectively. The proposed method was validated through simulations and experimental results, and its viability is expected to be verified on various radiological imaging systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.