Abstract
Superconducting microstrip single photon detectors (SMSPDs) received great interest since they are expected to combine the excellent performance of superconducting nanostrip single photon detectors with the possibility to cover large active areas using low-cost fabrication techniques. In this work, we fabricated SMSPDs based on NbRe to investigate the role of vortices in the dark counts events in this innovative material and in devices with micrometer size. We realized devices with different layouts, namely single microstrips and pairs of parallel microstrips. The energy barriers related to the motion of single vortices or vortex–antivortex pairs, responsible of detection events, have been determined and compared with the ones of similar devices based on different materials, such as MoSi, WSi and NbN. The analysis confirms the high potential of NbRe for the realization of superconducting single photon detectors with large areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.