Abstract

Cyclic creeps can bring to additional damage, resulting in shorter fatigue lives, so the effects of fatigue damage and cyclic creep damage should be taken into account in the life prediction. In this case, the mean strain rate model based on ductility exhaustion theory can be adopted. An engineering structure inevitably has some stress concentration area. As to this situation, by high temperature low cycle fatigue tests with different notch sizes, cyclic creep behavior is investigated and compared with that of smooth specimens in this paper. The results indicate that, due to existence of notch, the cyclic creep deformation is restricted within a little range around notch and cannot spread widely, so the fatigue strength of notch specimens increases. Based on the ductility dissipation theory and effective stress concept of continuum damage mechanism (CDM), the mean displacement rate at half life is acted as control parameter, and a high temperature multi-axial fatigue life prediction method is proposed in this paper. The prediction results show that all test data are within ±2.0 error factor, which is better than that of axial maximum stress method. This method has simple form and fewer constants, can be used to predict high temperature stress-controlled fatigue life whatever smooth or notch specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call