Abstract

The main objective of this study is to investigate cutting parameter effects of surface roughness in a lathe dry boring operation. A full factorial design was used to evaluate the effect of six (6) independent variables (cutting speed, feed rate, depth of cut, tool nose radius, tool length and type of boring bar) and their corresponding two-level interactions. In this experiment, the dependant variable was the resulting fast cut surface roughness (R,). In order to perform all possible variable combinations, a total of 216 cuts were. The results revealed that using short tool length always provide good surface roughness and that only slight improvement on surface roughness can be achieved by properly controlling the cutting parameters and/or the type of boring bar used. The results also revealed that using a long tool length may results in vibration that could be efficiently controlled by the use of a damped boring bar. With such a long tool length, the cutting variables become important factors to control in order to significantly improve surface roughness results with both types of boring bars. A prediction model is proposed for each types of boring bar. Both models are highly significant, p<0.00001, with coefficients of determination of 0.56 and 0.57 for a standard boring bar and a damped boring bar, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call