Abstract

This paper presents the comparison of various current control strategies employed for an interleaved power factor correction (PFC) boost converter for improving the power quality. The major control strategies discussed in this paper are: peak current control, average current control, hysteresis control, borderline current control and non-linear control. These strategies are implemented in MATLAB/SIMULINK and the performance of the proposed converter is compared under open loop and closed loop operation. From the results, the input current waveform was close to input voltage waveform implying improved power factor and reduced total harmonic distortion for nonlinear current control technique. Experimental results validate the proposed method.

Highlights

  • The power-electronics products are employed for a variety of applications such as power supplies for microelectronics, household electric appliances, electronic ballasts, battery charging, motor drives, power conversion circuits, etc., but this leads to rich current harmonics at the supply side

  • The simulation results of the different current control strategies for interleaved boost converter are discussed here

  • The converter is designed with the simulation parameters as shown in Table 1; The performance of the interleaved boost converter is examined by computing parameters such as Total Harmonic Distortion (THD), Distortion factor Kd, Displacement factor Kθ and the power factor

Read more

Summary

Introduction

The power-electronics products are employed for a variety of applications such as power supplies for microelectronics, household electric appliances, electronic ballasts, battery charging, motor drives, power conversion circuits, etc., but this leads to rich current harmonics at the supply side. Power Factor Correction (PFC) is necessary for AC-DC converters in order to fulfill the requirements of international standards. PFC will reduce the harmonics in the supply current and boost the efficiency of the system. Even though numerous methods have been suggested to resolve the problem of low power factor, it is important to make the supply power factor to unity. In order to meet the standards of IEC 6l000-3-2 Electromagnetic compatibility (EMC): harmonic. (2016) Investigation of Current Control Techniques of AC-DC Interleaved Boost PFC Converter.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call