Abstract

Cure kinetics of the reaction of diglycidyl ether of bisphenol A with inorganic complexes based on zinc (II) chelate with diethylene triamine (Dien) as ligand were studied using non-isothermal differential scanning calorimetry (DSC). The complex curing agents were synthesized and characterized by elemental analysis, FT-IR, and ICP- Plasma techniques. Thermal dissociation behaviour of curing agents was also studied using thermogravimetric (TG) analysis in isolated form. The parameters of non-isothermal curing kinetics, activation energy (Ea), pre-exponential factor (A) and rate constant (K) were obtained according to Kissinger, Ozawa, and iso-conversion equations. The activation energy values for DGEBA/Zn(Dien)2Br2 and DGEBA/Zn(Dien)2(NO3)2 systems obtained by Kissinger method were 106.50 and 86.95, by Ozawa method were 108.63 and 91.12 kJ/mol and by iso-conversion equation were 107.67 and 92.66 kJ/mol, respectively. The values for pre-exponential factor (A) obtained for DGEBA/Zn(Dien)2Br2 and DGEBA/Zn(Dien)2(NO3)2 systems were 4.80 × 1011 and 4.44 × 107 s−1 with rate constants (K) of 0.90 and 0.12 s−1, respectively. The DSC thermograms of DGEBA with bromide complex showed two exothermic peaks, while DGEBA curing with nitrate complex displayed only one isolated peak.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call