Abstract
The internal structure of the stationary m=1 and m=2 modes in an ohmic heating plasma and the double m=1 mode structure in a lower hybrid current drive plasma are investigated on the WT-3 tokamak [Maehara et al., Nucl. Fusion 38, 39 (1998)] using computer tomography after the application of the singular value decomposition to the soft x-ray signals. The results show that, in both cases, two coexisting modes have the same frequency and have a fixed mutual phase relation, indicating that two modes are coupled and rotate as one body in the toroidal direction. It is found that the mutual inductance of two loops of helical current filaments for producing magnetic islands always takes the maximum at the experimentally observed positions of two-mode structures. This result means not only that the electromagnetic coupling of two current loops is at the maximum, but also that the two loops are in the dynamically stable position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.