Abstract

We present investigations into the collision of co-travelling solitary waves in a granular chain. Impulses are injected into the system by means of a piezo stack and the results are compared to a numerical model of discrete masses connected by non-linear springs. Similar to other solitary wave-carrying systems, a phase shift in both interacting solitary waves is observed due to their collision. Additionally, the formation of small secondary waves is observed in both numerical and experimental results. Insight into solitary wave interactions will be important for high-frequency excitation of a granular crystal, which may allow for improved Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.