Abstract

The temperature-illumination-dependent open-circuit voltage (VOC) method is utilized to separately and quantitatively estimate carrier recombination rates at the buffer/absorber interface, in the space-charge region (SCR), and in the quasi-neutral region (QNR) of Cu(In,Ga)(S,Se)2 (CIGSSe)-based thin-film solar cells with various device structures. The correlation between open-circuit voltage deficits (VOC,def) among the carrier recombination rates of the CIGSSe solar cells with a conversion efficiency (η) above 17% is examined. It is revealed that VOC,def is decreased to 0.373 V with the reduced carrier recombination rate at the buffer/absorber interface through the development of device structures. To further decrease VOC,def (for the improved η), the carrier recombination rates in SCR and QNR are essential to be reduced by the further improvement of CIGSSe quality. Consequently, understanding the quantitative carrier recombination rates across the device, estimated from the temperature-illumination-dependent VOC method, is practical to know which part of the solar cell needs to be developed for high η above 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.