Abstract

Current dosimetry protocols require geometrical reference conditions for the determination of absorbed dose in external radiotherapy. Whenever these geometrical conditions cannot be maintained the application of additional corrections becomes necessary, in principle. The current DIN6800-2 protocol includes a corresponding factor k NR , but numerical values are lacking and no definite information about the magnitude of this correction is available yet. This study presents Monte-Carlo based calculations within the 6 MV-X photon field of a linear accelerator for a common used ion chamber (PTW31010) employing the EGSnrc code system. The linear accelerator model was matched to measurements, showing good agreement and is used as a realistic source. The individual perturbation correction factors as well as the resulting correction factor k NR were calculated as a function of depth for three field sizes, as a function of central axis distance for the largest field and within the build-up region. The behaviour of the ion chamber was further investigated for an idealized hypothetical field boundary. Within the field of the linear accelerator where charged particle equilibrium is achieved the factor k NR was generally below ∼ 0.5%. In the build-up region a depth dependent correction of up to 2% was calculated when positioning the chamber according to DIN6800-2. Minimizing the depth dependence of the corrections in the build-up region lead to a slightly different positioning of the ion chamber as currently recommended. In regions of the hypothetical field boundary with missing charged particle equilibrium and high dose gradients, the ion chamber response changed by up to ∼ 40%, caused by the comparatively large volume (0.125 cm 3 ) of the investigated chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.