Abstract

Copper ions play a fundamental role in plant metabolism where its uptake and distribution within the organism is highly regulated, allowing the cells to sustain an adequate concentration. Shortage or excess of Cu can cause severe damage to the organisms endangering their survival. We recently reported a non-invasive method to follow the intracellular uptake of bivalent copper ion concentration by fluorescence lifetime microscopy of green fluorescent protein within plant cells. Measuring the fluorescence lifetime has the advantage of being independent on the fluorophore concentration and the excitation intensity. The use of GFP is beneficial because the protein can be introduced nondestructively. Here, we discuss the benefits of this approach as well as the possibility of applying this concept for the investigation of Cu redistribution and storage at the subcellular level. The fluorescence lifetime-encoded microscopic images are envisioned to map the copper distribution within plant cells not only qualitatively but even quantitatively. Time-lapse microscopy enables the following of cellular processes and the study of relevant transport mechanisms of copper in plant cells. Perspectives and necessary improvements are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.