Abstract

This paper presents a study of microstructures and properties of pure copper and copper–fullerene-soot (Cu-FS) composite materials produced by mechanical milling followed by hot pressing. The electrochemical etching method was successfully applied to reveal the fragmented structure of the specimens produced by high-energy ball milling. It is shown the carbon nanoparticles are involved in the composite microstructure formation. Copper–fullerene-soot composite materials have a complex microstructure with a bimodal grain distribution. Both recrystallized (average 3 μm) and polygonized (155 nm) grains are observed in the microstructure. Thus, in the case of pure copper, due to the absence of carbon nanoparticles, only recrystallized grains are observed in the microstructure. The Cu-FS composite has a hardness up to 160 HV and thermal stability up to 700 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.