Abstract

Carbon dioxide is the best retrofit to meet the future demand on long-term environmental friendly working fluids. The volumetric efficiency of supercritical carbon dioxide is very high, which makes it a promising working fluid in convection-based energy systems with high efficiency and small volume. Here, the natural convection of supercritical carbon dioxide driven only by temperature difference is studied in circulation loops. The Reynolds number of the flow is about 104 when the temperature difference is only 20 K, about two orders of magnitude greater than that of water. Furthermore, the heat transfer rate is about 3 times as great as that of water. These results demonstrate the potential of carbon dioxide as a working fluid in solar thermal conversion, nuclear power and waste heat utilization, etc. The influence of the tube diameter on the flow and heat transfer characteristics is discussed. Both the velocity and the Nusselt number are greater in the loop with a larger tube diameter where flow reversal occurs periodically. It is found that flow reversal degrades the system efficiency of the natural circulation loop. Therefore, the optimization about the geometric configuration of convection-based energy systems using carbon dioxide as a working fluid does exist and is very important for their safe and effective operation. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.