Abstract

BackgroundCategorizing an inherently continuous predictor in prognostic analyses raises several critical methodological issues: dependence of the statistical significance on the number and position of the chosen cut-point(s), loss of statistical power, and faulty interpretation of the results if a non-linear association is incorrectly assumed to be linear. This also applies to a therapeutic context where investigators of randomized clinical trials (RCTs) are interested in interactions between treatment assignment and one or more continuous predictors.Methods/DesignOur goal is to apply the multivariable fractional polynomial interaction (MFPI) approach to investigate interactions between continuous patient baseline variables and the allocated treatment in an individual patient data meta-analysis of three RCTs (N = 2,299) from the intensive care field. For each study, MFPI will provide a continuous treatment effect function. Functions from each of the three studies will be averaged by a novel meta-analysis approach for functions. We will plot treatment effect functions separately for each study and also the averaged function. The averaged function with a related confidence interval will provide a suitable basis to assess whether a continuous patient characteristic modifies the treatment comparison and may be relevant for clinical decision-making. The compared interventions will be a higher or lower positive end-expiratory pressure (PEEP) ventilation strategy in patients requiring mechanical ventilation. The continuous baseline variables body mass index, PaO2/FiO2, respiratory compliance, and oxygenation index will be the investigated potential effect modifiers. Clinical outcomes for this analysis will be in-hospital mortality, time to death, time to unassisted breathing, and pneumothorax.DiscussionThis project will be the first meta-analysis to combine continuous treatment effect functions derived by the MFPI procedure separately in each of several RCTs. Such an approach requires individual patient data (IPD). They are available from an earlier IPD meta-analysis using different methods for analysis. This new analysis strategy allows assessing whether treatment effects interact with continuous baseline patient characteristics and avoids categorization-based subgroup analyses. These interaction analyses of the present study will be exploratory in nature. However, they may help to foster future research using the MFPI approach to improve interaction analyses of continuous predictors in RCTs and IPD meta-analyses. This study is registered in PROSPERO (CRD42012003129).

Highlights

  • Categorizing an inherently continuous predictor in prognostic analyses raises several critical methodological issues: dependence of the statistical significance on the number and position of the chosen cut-point(s), loss of statistical power, and faulty interpretation of the results if a non-linear association is incorrectly assumed to be linear

  • This project will be the first meta-analysis to combine continuous treatment effect functions derived by the multivariable fractional polynomials interaction (MFPI) procedure separately in each of several Randomized clinical trial (RCT)

  • A recent individual patient data meta-analysis of three randomized controlled trials (RCTs) showed that the pre-defined subgroup of patients who suffered from an acute respiratory distress syndrome (ARDS) had a clinical benefit across various endpoints if they were treated with a higher positive end-expiratory pressure (PEEP) ventilation strategy [5,6]

Read more

Summary

Introduction

Categorizing an inherently continuous predictor in prognostic analyses raises several critical methodological issues: dependence of the statistical significance on the number and position of the chosen cut-point(s), loss of statistical power, and faulty interpretation of the results if a non-linear association is incorrectly assumed to be linear This applies to a therapeutic context where investigators of randomized clinical trials (RCTs) are interested in interactions between treatment assignment and one or more continuous predictors. These issues include dependence of the statistical significance of the interaction on the number and position of the chosen cut-points, loss of statistical power, and a faulty interpretation of the results if a non-linear association is incorrectly assumed to be linear [1] To overcome these issues, Royston and Sauerbrei proposed the so-called multivariable fractional polynomials interaction (MFPI) approach to investigate potential treatment modifying effects [2,3]. We will use the MFPI approach [2,3] and the new strategy to summarize functions across RCTs [4] to re-analyse this dataset of 2,299 critically ill patients from the previously reported individual patient data (IPD) meta-analysis [5]

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.