Abstract
The physical activity is important context information to define and understand the user’s situation in real time and in detail. Therefore, we developed a context-aware function using the activity recognition and showed that it is possible to provide more appropriate support according to the user’s situation. In this study, we first constructed a model by applying machine learning to data sensed by a smartphone in order to predict the physical activity of the user. In the experiment, high accuracy of 97.6% was obtained by using the model. Next, we developed three functions using the activity recognition. These functions predict the physical activity of user in real time. In addition, user support is performed according to the predicted physical activity. In the experiment using developed functions, it is confirmed that these functions worked correctly in real-world conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.